www.itim.unige.it/strategos

Engineering Technologies for Strategy in Defense, Industry, Government & Homeland Security

STRATEGOS

Strategic decision making in complex environments with the analytic hierarchy process (AHP)

Antonella PETRILLO University of Napoli "Parthenope"

antonella.petrillo@uniparthenope.it

Unclassified Approved for Public Release Distribution Unlimited

DEGLIST

University of Napoli "Parthenope" Department of Engineering

Research Activities

Multi Criteria Decision Analysis (MCDA)

14.0 and Smart Manufacturing

Digitalization

Sustainability and Life Cycle Analysis (LCA)

Simulation & Modeling

Safety at workplace

Schneider Gelectric

HITACHI Inspire the Next

Research Activities University of Pittsburgh Prof. Thomas SAATY

🛞 University of Pittsburgh

PITT BUSINESS Joseph M. Katz Graduate School of Business

Research Activities AHP Academy

Honorary President

Thomas L, Saaty (born 1926 in Mosul, Irag) is an American mathematician, He teaches in the Joseph M, Katz Graduate School of Business, He is the inventor, architect, and primary theoretician of the Analytic Hierarchy Process, a decision-making framework used for large-scale, multiparty, multi-criteria decision analysis, and of the Analytic Network Process, its generalization to decisions with dependence and feedback.

ACTIVITIES training courses;

Particularly, the AHP Academy will promote events and offer tools for the diffusion of information regardings the field of decision making, such as:

- international ectures;
- publications on Decision Making/AHP;
- scholarships.

AHP Academy

The AHP Academy promotes the diffusion of the culture and methodologies of Decision Making, with particular reference to those on Analytic Hierachy Process. The aim of the association is to support the development of studies, researches and applications within the Decision Making and the AHP, and to create a place to share experiences and results of the researches on decision making among researchers, experts, public and private institutions of around the whole world.

THE AIMS

The goals of AHP Academy are:

- Promote the spread of a culture of methodologies of Decision Making in the world, working for the sharing of experience and knowledge of among the members.
- & Facilitate the exchange of experience and knowledge between the parties concerned with issues of Decision Making, including the identification of areas of interest and the prevailing development of partnerships,
- Service a more effective dialogue between research and business, encouraging and promoting joint initiatives, support the university in identifying training needs and research priorities for the sector.
- Evolve as a center of expertise and collaborate with national and international associations involved in the standardization and certification of methods, criteria and tools for decision making, taking into account the quality system.

Research Activities AHP Academy

AHP Academy

Research Activities Decision Lens

John & Daniel Saaty

DECISION LENS

Research Activities Some Publications

Copycighted Materia

Theory and Applications of the Analytic Network Process

Decision Making with Benefits, Opportunities, Costs, and Risks

Thomas L. Saaty

FUNDAMENTALS OF

DECISION MAKING

AND PRIORITY THEORY

WITH THE ANALYTIC HIERARCHY PROCESS

VOL. VI OF THE AHP SERIES

THOMAS L. SAATY

Mathematical Principles of Decision Making

Principia Mathematica Decernendi

The Complete Theory of the Analytic Hierarchy Process

Thomas L. Saaty

The Analytic Hierarchy Process, the Analytic Network Process and Beyond

Creative Thinking, Problem Solving & Decision Making

Thomas L. Saaty

Research Activities Some Publications

What is decision making?

Decision making today is a science.

People have hard decisions to make and they need help because many lives may be involved, the survival of the business depends on making the right decision, or because future success and diversification must survive competition and surprises presented by the future.

3 Kinds of Decisions

Instantaneous and personal like what **restaurant to eat** at and what kind of rice cereal to buy.

Personal but allowing a little time like which job to choose and what **house to buy** or car to drive.

Long term decisions and any decisions that involve **planning** and **resource allocation** and more significantly group decision making.

Our lives are the <mark>sum</mark> of our <mark>decisions</mark>, whether in <mark>business</mark> or in personal spheres.

Often, **when** we decide is as important as **what** we decide.

To be a person is to be a decision maker.

Thomas Saaty

Which career should I pursue?

Should I break up -- or get married?!

Where should I live?

Simple choices:?!? .. Simple decisions

Decision Making Hard choices:?!?... Hard decisions

Choice 1

Choice 2

Big decisions like these can be agonizingly difficult.

But that's because we think about them the wrong way!

... Hard Choices ... How to make it!!!

Hard Choices are hard because there is no best option.

In an easy choice one alternative is better than the other. In **hard choice one alternative is better in some ways**, the other alternative **is better in other ways** and neither is better than the other overall.

The alternatives must be equally good!

Why is it important to decide?

....and decide well

Importance of decision making process

- At least 50% of decisions should not be successful.
- 33% of decisions are never implemented .
- 50% of the decisions implemented is left after 2 years.
- 66% of decisions are based on methods used to failure.
- The decisions that use a high level of participation are successful in 80% of cases, but this occurs only 20% of the time.
- In practice, any error is unavoidable decision.

Decision Making Importance of decision making process

- 11 Million meetings in the U.S. per day
- Most professionals attend a total of 61.8 meetings per month
- Research indicates that over 50 percent of this meeting time is wasted
- Professionals **lose 31 hours per month** in unproductive meetings, or approximately four work days.

Decision making is **difficult enough**...

....<u>It is necessary</u> to develop strategies and measures to manage these risks!

Of course.....The **success parameters** for any project

are on time completion, within specific **budget** and with **requisite performance** (technical requirement).

To make a decision in complex systems

Introduction

The analytic hierarchy process (AHP) is a structured technique for organizing and analyzing complex decisions, based on mathematics and psychology. It was developed by Thomas L. Saaty in the 1970s.

It represents the most accurate approach for quantifying the weights of criteria. Individual experts' experiences are utilized to estimate the relative magnitudes of factors through pair-wise comparisons.

Scopus

Scopus is a source-neutral abstract and citation database curated by independent subject matter experts. It places powerful discovery and analytics tools in the hands of researchers, librarians, institutional research managers and funders.

Scopus indexes content from 24,600 active titles and 5,000 publishers which is rigorously vetted and selected by an independent review board, and uses a rich underlying metadata architecture to connect people, published ideas and institutions.

Documents by year

21,535 document results

Select year range to analyze: 1971-20219

Boolean operator TITLE-ABSTRACT-KEYWORDS

Documents

Documents by country

21,535 document results

Select year range to analyze: 1971-20219

Documents by authors

21,535 document results

Select year range to analyze: 1971-20219

Documents by subject area

21,535 document results

Select year range to analyze: 1971-20219

Documents by type

21,535 document results

Select year range to analyze: 1971-20219

Who uses AHP?

THE ORGANIZATION

A8-XP is the strategic planning division of the Air Force. It focuses on orchestrating their annual integration effort to **prioritize and allocate resources in their 30-year plan**.

THE PROBLEM

Their current process was not flexible enough to handle on-the-fly adjustments while still accounting for the long-term payout of the programs.

THE SOLUTION

The development of AHP model specifically related to decisions and longer-term, strategic planning choices. This framework made it easy to manipulate and update data, which helped them look at resource decisions across multiple time periods, both mid-term and long-term.

THE ORGANIZATION

Arizona Department of Transportation (ADOT). ADOT strategically prioritizes the investment strategy for over 160 projects in a typical Statewide Transportation Improvement Plan (STIP) cycle. The cycle usually lasts for 4 to 5 years and are accountable for around \$1.2 billion of transportation funding, which is comprised of 7 different funding sources.

THE PROBLEM

ADOT needed to incorporate project performance into their planning process and provide a system-wide perspective during their planning decision process.

THE SOLUTION

The development of AHP model to improve their performance measures in place. This helped enable them to spend their budget with a direct correlation to expected performance and answer questions of what extra funding would yield.

agricole alimentari e forestali

THE ORGANIZATION

Italian Ministry of Agricultural Policies is responsible for the elaboration and coordination of agricultural, forestry, agri-food policies as well as for fishing at national, European and international level, representing Italy in the European Union for the matters of competence.

THE PROBLEM

Identification of a "quality" model for Italian racecourse for the distribution of economic resources. Prioritizes the resources allocation strategy.

THE SOLUTION

The development of AHP model helped to define key factors to improve Italian racecourse performance. This helped them to allocate better their resources and to spend better their public budget.

THE ORGANIZATION

MBDA is a world leader in missile systems offering a comprehensive international product range incorporating today's most advanced innovations.

THE PROBLEM

Train managers in decision making. For senior executives, managers for building highperforming teams and key decision makers.

THE SOLUTION

The "Decision-Making School" deals with planning and implementing top level training seminars for MBDA executives on various aspects of the theory of rational decisions.

IMPLEMENTATION OF AHP METHODOLOGY INTO NATIONAL DEFENSE EVALUATION & QUALIFICATION PROJECTS

Subsecretaría de Defensa

JULIO BAEZA VON BOHLEN

Why apply AHP?

Most Decision Problems are Multicriteria

- Maximize profits
- Satisfy customer demands
- Maximize employee satisfaction
- Satisfy shareholders
- Minimize costs of production
- Satisfy government regulations
- Minimize taxes
- Maximize bonuses

We need to prioritize both tangible and intangible criteria:

In most decisions, **intangibles** such as:

- political factors and
- social factors

take precedence over **tangibles** such as:

- economic factors and
- technical factors

Just a little example to define intangible elements

...to understand that

Knowledge is Not in the Numbers!

Isabel Garuti is an *environmental res*earcher whose father-in-law is a master chef in Santiago, Chile.

He owns a well-known **Italian restaurant** called **Valerio**. He is recognized as the best cook in Santiago. Isabel had eaten a favorite dish **risotto ai funghi**, rice with mushrooms, many times and **loved it** so much that she wanted to learn to cook it herself for her husband, Valerio's son, Claudio. So she armed herself with a pencil and paper, went to the restaurant and begged Valerio to spell out the details of the recipe in an easy way for her.

Valerio <u>can</u> say, "Put more of this than of that, don't stir so much," and so on. That is how he cooks his meals - by following his instincts, not formalized logically and precisely.

BUT ISABEL could not replicate his dish!!??!! The question is:

How does he synthesize what he knows?

You don't need to know everything to get to the answer.

It is not the precision of measurement on a particular factor that determines the validity of a decision, but the importance we attach to the factors involved.

How do we assign importance to all the factors and synthesize this diverse information to make the best decision?

information to make the best decision?

AHP allows to assign a **weight of importance** to each factors.

- **AHP allows** to measure **intagibles elements** through expert's judgment.
- AHP choose the "**best**" among several alternatives.

Differently from common optimization methods AHP uses derived measurements or subjective.

Subjectivity \neq Arbitrariness

- Initially, the decision-making process was studied as a rational process of analyzing a problem and seeking solution.
- However, in recent years it has become clear that human beings are far from making in a rational way, either as individual or as part of group.

The increasing complexity of modern problems make it extremely important to adopt a methodology for making easy to use and understand.

The Analytic Hierarchy Process meets these requirements.

- Analytic: Decompose the problem into its elementary components.
- Hierarchy: Design the decision problem in a hierarchical or network defining the goal, criteria and the sub-criteria
- Process: Process the data and evaluations in order to achieve the final result

Basics AHP model

Step#1: Develop a model for the decision: Break down the decision into a hierarchy of goals, criteria, and alternatives.

A hierarchy is an **efficient way** to organize complex systems. It is efficient both for structurally, representing and а system, functionally, for controlling and passing information down the system.

Unstructured problems are best grappled with in the systematic framework of a hierarchy or a feedback network.

Step#2: Derive priorities (weights) for the criteria: The **importance of criteria** are compared pairwise with respect of the **desired goal** to derive their weights.

We **then** check the **consistency of judgments**; that is, a review of the judgments is done in order to esure a reasonable level of consistency in terms of proportionality and transitivity.

Step#2: Derive priorities (weights) for the criteria:

In practice this means that a **pair of elements** in a level of the hierarchy **are compared** with respect to parent elements to which they relate in the level above.

The question is how?

Step#2: Derive priorities (weights) for the criteria:

If, for example, we are comparing **two apples** according to weight we ask:

- Which apple is bigger?
- How much bigger is the larger than the smaller apple? Use the smaller as the unit and estimate how many more times bigger is the larger one.
- The apples must be relatively close (homogeneous) if we hope to make an accurate estimate.

Step#3: Derive the local priorities (preferences) for the alternatives: Derive priorities for the alternatives with respect to each criterion. Check the consistency.

Step#4: Derive the Overal Priorities (Model Syntesis): All alternative priorities obtained are combined as a weighted sum – to take into account the weight of each criterion – to establish the overal priorities of the alternatives. The alternative with the highest overall priority consitutes the best choice.

Step#5: Perform Sensitivity Analysis: A study of how changes in the weights of the criteria could effect the result os done to understand the rationale behind the obtained results.

Step#6: Making a Final Decision: Based on the synthesis results ad sensitivity analysis, a decision can be made.

AHP Logic Diagram

Case Study 1

AHP Model:

Buying a car

1. Developing a model

1. Developing a model

What are the Criteria? What are the Alternatives?

1. Developing a model

It is clear that when buying a car **not all criteria are equally important** in a given time.

For example,

- a student may give more importance to the cost factor rather than to comfort and safety;
- while a parent ma give more importance to the safety factor rather than to the others.

Clearly, the importance or weight of each criterion will be different.

Because of this, we first are required to derive by pairwise comparisons the **relative priority** of each criterion with respect to each of the others using a numerical scale of comparison developed by

Prof. Saaty, the so-called **sematic scale of Saaty's**.

Sematic scale of Saaty's

Numeric value	Verbal judgment
1	Equal importance
2, 3	Moderate importance of one over another
4, 5	Strong or essential importance
6, 7	Very strong or demonstrated importance
8, 9	Extreme importance

Use Reciprocals for Inverse Comparisons

To perform the pairwise comparison you need to create a **comparison matrix** of the criteria involved in the decision.

Buying a car	СОЅТ	COMFORT	SAFETY
COST			
COMFORT			
SAFETY			

Cells in comparison matrices will have a value from the numeric scale to reflect **our relative preference** in each of the compared pairs.

For example, if we consider that the **cost** is *very strongly more important* than the **comfort** factor, the cost-comfort factor comparison cell will contain the value 7.

Buying a car	COST	COMFORT	SAFETY
COST		7	
COMFORT			
SAFETY			

Of course, the opposite comparison, the importance of comfort relative to the importance of cost, will yield the reciprocal of this value (comfort/cost = 1/7).

Buying a car	COST	COMFORT	SAFETY
COST		7	
COMFORT	1/7		
SAFETY			

If we consider that the **cost** is *moderately more important* than safety, we will enter 3 in the costsafety cell and the safety-cost cell will contain the reciprocal.

Buying a car	COST	COMFORT	SAFETY
COST		7	3
COMFORT	1/7		
SAFETY	1/3		

Finally, if we feel that **safety** is *moderately more important* than **comfort**, the safety-comfort cell will contain the value 3 and the comfort-safety cell, will have the reciprocal 1/3.

Buying a car	COST	COMFORT	SAFETY
COST		7	3
COMFORT	1/7		1/3
SAFETY	1/3	3	

Note that in comparison matrix when the importance of a criterion is compared with itself the input value is 1.

Pairwise comparison matrix with intensity judgment

Buying a car	COST	COMFORT	SAFETY
COST	1	7	3
COMFORT	1/7	1	1/3
SAFETY	1/3	3	1

At this stage you can see on of the great advantages of the AHP:

- Its natural simplicity;
- Regardless of how many factors are involved in making the decision, the AHP method requires to compare a pair of elements at any time;
- It allows the inclusion of tangible variables (e.g., cost) as well intangible ones (e.g., comfort) as criteria in the decision.

To calculate the priorities... weights for each criteria

Buying a car	COST	COMFORT	SAFETY	Product
COST	1.000	7.000	3.000	21.00
COMFORT	0.143	1.000	0.333	0.048
SAFETY	0.333	3	1.000	1.000

To calculate the priorities... weights for each criteria

Buying a car	COST	COMFORT	SAFETY	Root3
COST	1.000	7.000	3.000	2.758
COMFORT	0.143	1.000	0.333	0.362
SAFETY	0.333	3	1.000	1.000

To calculate the priorities... weights for each criteria

Buying a car	COST	COMFORT	SAFETY	Root3	Normalization
COST	1.000	7.000	3.000	2.758	0.669
COMFORT	0.143	1.000	0.333	0.362	0.087
SAFETY	0.333	3	1.000	1.000	0.242
				4.121	1

The ... weights for each criteria are:

2. Deriving Priorities (weights) for the Criteria Consistency

Once judgments have been entered, it is necessary to check that they are consistent.

Since the numeric values are derived from subjective preferences of individuals, it is possible to avoid some inconsistency in the final matrix of judgments.

Because the world of experience is vast and we deal with it in pieces according to whatever goals concern us at the time, **our judgments can never be perfectly precise.**

2. Deriving Priorities (weights) for the Criteria Consistency

The question is

How much inconsistency is acceptable? For this purpose AHP calculates the Consistency Index (CI) of the matrix

$$CI = (\lambda max - n) / (n-1) < 10\%$$

Where n is the number of compared elements (in our example n = 3)

2. Deriving Priorities (weights) for the Criteria Consistency

Buying a car	COST	COMFORT	SAFETY	Root3	Normaliz ation	Coeff	λmax Eigenvalue
COST	1.000	7.000	3.000	2.758	0.669	1	0.988
COMFORT	0.143	1.000	0.333	0.362	0.087	0.1313	0.967
SAFETY	0.333	3	1.000	1.000	0.242	0.362	1.051
Sum	1.476	11	4.333	4.121	1		3.007

For example:

For COST (2.75)* (1.476)/tot (4.12) = 1,004 (Eigenvalue)

CI = (3.007 - 3) / (3-1) = 0.004

Since the value is less than 0.10, we can assume that our judgments matrix is **resasonable consistent.**

Our third step consists of deriving the **relative priorities** (preferences) **of the alternatives with respect of each criterion**. In our case are cost, comfort, and safety.

In our example we have only **2 alternatives** CAR1 and CAR 2 and we have **3 criteria**.

This means that there will be **3 comparison matrices** corresponding to the following three comparisions:

- With respect of the cost criterion: Compare CAR 1 with CAR 2
- With respect of the comfort criterion: Compare CAR 1 with CAR 2
- With respect of the safety criterion: Compare CAR 1 with CAR 2

With respect of the cost criterion which alternative is preferable? CAR 1 or CAR 2?

Let us assume that we prefer **very strongly** the CAR 1 over the CAR 2

COST	CAR 1	CAR 2
CAR 1	1	7
CAR 2	1/7	1

Priority:

- 0.875 for CAR 1 = 87.5%
- 0.125 for CAR 2 = 12.5%

With respect of the comfort criterion which alternative is preferable? CAR 1 or CAR 2?

Let us assume that we prefer **strongly** the CAR 2 over the CAR 1

COMFORT	CAR 1	CAR 2	
CAR 1	1	1/5	C.I. = 0
CAR 2	5	1	

Priority: 0.833 for CAR 2 = 83,3% 0.167 for CAR 1 = 16,7%

With respect of the safety criterion which alternative is preferable? CAR 1 or CAR 2?

Let us assume that we prefer **extremely** the CAR 2 over the CAR 1

COMFORT	CAR 1	CAR 2	
CAR 1	1	1/9	C.I. = 0
CAR 2	9	1	

We can **summarize** the results indicating that:

- 1. if our only criterion were **cost**, CAR 1 would be our best option (priority 0.875);
- 2. if our only criterion were **comfort** our best option would be the CAR 2 (priority 0.833);
- 3. if our sole purchase criteria were **safety** our best option would be the CAR 2 (priority 0.90)

COST = 87,5% for CAR 1

- COMFORT = 83,3% for CAR 2
- SAFETY = 90% for CAR 2

4. Derive Overall Priorities (Model Synthesis)

Final RESULT

	COST	COMFORT	SAFETY	Overall priority
Criteria weights	0.669	0.088	0.243	
CAR 1	0.875	0.167	0.100	0.146
CAR 2	0.125	0.833	0.900	0.853
	CAR 1 CAR 2	= 14.6% = 85.3%		

5. Sensitivity Analysis

It is useful to perform a "**what-if**" analysis to see how the final results would have a change if the **weights** of the **criteria** would have been **different**.

Sensitivity analysis allows us to understand how robust is our original decision.

To perform a sensitivity analysis it is necessary to **make changes to the weights** of the criterion and see how the change the overall priority.

5. Sensitivity Analysis

Scenario 1: all criteria same weight

	COST	COMFORT	SAFETY	Overall priority
Criteria weights	0.333	0.333	0.333	
CAR 1	0.875	0.167	0.100	0.130
CAR 2	0.125	0.833	0.900	0.869

5. Sensitivity Analysis

Scenario 2: cost weight leading

	COST	COMFORT	SAFETY	Overall priority
Criteria weights	0.500	0.250	0.250	
CAR 1	0.875	0.167	0.100	0.129
CAR 2	0.125	0.833	0.900	0.435

6. Final Decision

The model is **rather robust** since CAR 2 is the best choice even when changing scenarios!

We can analyze different possible scenarios of interest to understand in which cases the best original choice is no longer so.

Case Study 2 AHP Model: Buying a car Using Superdecision

By Creative Decisions Foundation 4922 Ellsworth Avenue Pittsburgh, PA 15213 Phone: 412-621-6546 Fax: 412-681-4510

Case Study 2

AESTHETIC/ Prestige	COMFORT	COST	SAFETY
Excellent	Medium	22.500,00 EUR	Medium
Good	Excellent	26.700,00 EUR	Excellent
Medium	Good	28.200,00 EUR	Good

🟟 ANP version 2.6.0-RC1 made on Tue, 19 Jan 2016 11:20:20 -0400. VCRevInfo 2771. Installed on Windows

File Design Assess/Compare Computations Networks Help

2

₩ 🕮 U	7 🕂 🔁 📕 3911	*12 *					
				=1	GOAL	- - ×	
					COLL	~	
				1		~	
				×		/ _	
					CRITERIA		i
				<			
				•1	ALTERNATIVES		ī
					ALTER ATTVES	-	Ĩ
				<			
							_

D Х

٥

 \times

1. Developing a Model

🟟 ANP version 2.6.0-RC1 made on Tue, 19 Jan 2016 11:20:20 -0400. VCRevInfo 2771. Installed on Windows

<u>File Design Assess/Compare Computations Networks Help</u>

🔞 ANP version 2.6.0-RC1 made on Tue, 19 Jan 2016 11:20:20 -0400. VCRevInfo 2771. Installed on Windows

<u>File Design Assess/Compare Computations Networks Help</u>

– 0 ×

🚱 Node Sel — 🗆 🛛 🛛	• GOAL	
Node connexions from "Buying a car"	Buying a car	
AESTHETICS ^		
CAR 1		
CAR 2		
CAR 3		
COST	COST COMFORT SAFETY AESTHETICS	
<u>SAFETY</u>	· · · · · · · · · · · · · · · · · · ·	
Okay Cancel		
	ALTERNATIVES CAR 2 CAR 3 CAR 3	

🔞 ANP version 2.6.0-RC1 made on Tue, 19 Jan 2016 11:20:20 -0400. VCRevInfo 2771. Installed on Windows

<u>File Design Assess/Compare Computations Networks Help</u>

😂 🖬 🎒 🖞 🛛 📌 🐴 📥 Sym 🛛 🐺 🔯

- 0 ×

Node connexic Node connexic AESTHETICS Buying a car CAR 1 CAR 2 CAR 3 COMFORT COST SAFETY	ons from "COS"	× T"	GOAL GOAL Buying a car Buying a car CRITERIA CRITERIA CRITERIA COMFORT SAFETY AESTHETICS description ALTERNATIVES ALTERNATIVES CAR1 CAR2 CAR3
Okay	Cancel		

đ \times 🟟 ANP version 2.6.0-RC1 made on Tue, 19 Jan 2016 11:20:20 -0400. VCRevInfo 2771. Installed on Windows File Design Assess/Compare Computations Networks Help 😂 🖬 🌆 🖞 🛛 📌 🗖 📥 Sym 🛛 🛧 🖗 GOAL - 🗆 🗵 Buying a car CRITERIA -미× COST COMFORT SAFETY AESTHETICS ALTERNATIVES - 🗆 × CAR 1 CAR 2 CAR 3

🚱 Comparisons for Super [_		\times	
1. Choose	2. Node comparisons with respect to	Bu	ying a	a ca
Node Cluster	Graphical Verbal Matrix Questionnaire Direct			
Choose Node	Comparisons wrt "Buying a car" node in "CRITERIA" c AESTHETICS is ????? more important than COMFO	luster RT	r	
Buying a car 🛁	1. AE STHETICS >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. COMFORT			
Cluster: GOAL	2. AESTHETICS >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. COST			
	3. AESTHETICS >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY			
Choose Cluster	4. COMFORT >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. COST			
	5. COMFORT >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY			
	6. COST >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY			
Restore				

Comparisons for Super [Decisions Main Window: Unnamed file 0		- 2 Deculto	
T. Choose	2. Node comparisons with respect to Buying a ca	r +	3. Results	
Node Cluster Choose Node Buying a car Cluster: GOAL Choose Cluster	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "Buying a car" node in "CRITERIA" cluster SAFETY is very strongly more important than COMFORT 1. AESTHETICS >=9.5 9 7 6 6 3 2 2 3 4 6 7 8 9 >=9.5 No comp. COMFORT 2. AESTHETICS >=9.5 9 7 6 5 4 3 2 2 3 4 6 7 8 9 >=9.5 No comp. COMFORT 2. AESTHETICS >=9.5 9 7 6 5 4 3 2 2 3 4 6 7 8 9 >=9.5 No comp. COMFORT 3. AESTHETICS >=9.5 9 7 6 5 4 3 2 2 3 4 6 7 8 9 >=9.5 No comp. SAFETY 4. COMFORT >=9.5 9 7 6 5 4 3 2 2 3 4 6 <	Normal – AESTHETICS COMFORT COST SAFETY	onsistency: 0.08704	Hybrid – 0.03960 0.10612 0.40207 0.45221
CRITERIA -	5. COMFORT >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY 6. COST >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY 	C	Completed Comparison	

2. Deriving Priorities (weights) for Criteria Consistency

- Click on the **Inconsistency button** (at top left corner of matrix)
- Choose Basic Inconsistency Report; the first cell
- Left-click on either the Current or **Best Value** cell to return to the matrix and input a new value . You can use the suggested value to improve the final CI.

Scomparisons for Super I	Decisions Main Window: Unnamed file 0		_	
1. Choose	2. Node comparisons with respect to Buying a car	+	3. Results	
Node Cluster Choose Node	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "Buying a car" node in "CRITERIA" cluster	Normal 🔟	nconsistency: 0.08704	Hybrid 🗕
Buying a car	COMFORT is 5 times more important than AESTHETICS Inconsistency COMFORT COST ~ SAFETY AESTHETIC 1 1 8 AESTHETIC 1 5 1 AESTHETIC 1 5 1	AESTHETICS COMFORT COST SAFETY		0.03960 0.10612 0.40207 0.45221
CRITERIA -	COST ~ (-1		Completed Comparison	0.40221

AESTHETIC Criteria

🛞 Comparisons for Super [Decisions Main Window: Unnamed file 0			_	
1. Choose	2. Node comparisons with respect to AESTHETICS	+	3. Results		
Node Cluster Choose Node AESTHETICS Cluster: CRITERIA Choose Cluster	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "AESTHETICS" node in "ALTERNATIVES" cluster CAR 2 is moderately 23455789 >=9.5 No comp. CAR 3 1. CAR 1 ==9.5 9 9 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 2 2. CAR 1 ==9.5 9 9 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 3 3. CAR 2 ==9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 3	CAR 1 CAR 2 CAR 3	Inconsistency: 0.06239		Hybrid
Restore			Completed Comparison Copy to clipboard		

COMFORT Criteria

Somparisons for Super E	Decisions Main Window: Unnamed file 0				—		\times
1. Choose	2. Node comparisons with respect to COMFORT	+		3. Results			
Node Cluster	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "COMFORT" node in "ALTERNATIVES" cluster CAR 2 is moderately more important than CAR 3 1. CAR1 ==5.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp 2. CAR1 ==5.5 9 8 7 6 5 4 3 2 2 2 3 4 5 6 7 8 9 >=9.5 No comp 3. CAR2 ==9.5 9 8 7 6 5 4 3 2 2 2 3 4 5 6 7 8 9 >=9.5 No comp CAR 3 3. CAR2 ==9.5 9 8 7 6 5 4 3 2 2 2 3 4 5 6 7 8 9 >=9.5 No comp CAR 3	CAR 1 CAR 2 CAR 3		Completed		Нуbі 0. 0.	rid
Restore			C	opy to clipboard			

COST Criteria

Somparisons for Super [Decisions Main Window: Unnamed file 0			- 🗆 X
1. Choose	2. Node comparisons with respect to COST	+	3. Results	
Node Cluster Choose Node	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "COST" node in "ALTERNATIVES" cluster CAR 2 is moderately more important than CAR 3	Normal 🗕	Inconsistency: 0.09040	Hybrid 🗕
COST	I. CAR 1 >>9.5 9 7 6 6 4 3 2 2 3 6 7 8 9 >>9.5 No comp. CAR 2 2. CAR 1 >>9.5 9 7 6 5 4 3 2 2 3 4 5 7 9 >>9.5 No comp. CAR 2 2. CAR 1 >>9.5 9 7 6 5 4 3 2 2 3 4 5 7 9 >>9.5 No comp. CAR 3 3. CAR 2 >>9.5 9 7 6 5 4 3 2 2 3 4 6 7 8 9 >9.5 No comp. CAR 3 3. CAR 2 >>9.5 9 7 6 5 3 2 2 3 4 6 7 8 9 >9.5 No comp. CAR 3	CAR 1 CAR 2 CAR 3		0.71724 0.19469 0.08808
Choose Cluster				
			Completed 🔶	
Restore			Copy to clipboard	

SAFETY Criteria

Somparisons for Super	Decisions Main Window: Unnamed file 0			_		<
1. Choose	2. Node comparisons with respect to SAFETY	+	3. Results			
Node Cluster Choose Node SAFETY Cluster: CRITERIA Choose Cluster ALTERNATIVES Restore	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "SAFETY" node in "ALTERNATIVES" cluster CAR 2 is moderately more important than CAR 3 1. CAR 1 >=0.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=0.5 No comp. CAR 2 2. CAR 1 >=0.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=0.5 No comp. CAR 3 3. CAR 2 >=0.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=0.5 No comp. CAR 3 3. CAR 2 >=0.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=0.5 No comp. CAR 3 3. CAR 2 >=0.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=0.5 No comp. CAR 3	CAR 1 CAR 2 CAR 3	Inconsistency: 0.05156		Hybrid - 0.157 0.593 0.249	- <u>'06</u> <u>363</u> <u>331</u>

4. Deriving Overall Priorities (Model Synthesis)

5. Sensitivity Analysis

Scenario 1: all criteria same weight

🛞 Comparisons for Super D	ecisions Main Window: AHP_3 CARS.sdmoc	ł	_		\times
1. Choose	2. Node comparisons	with respect to	Buyi	ing a	a cai
Node Cluster	Graphical Verbal Matrix Questionnaire Dire	ect			
Choose Node Image: Column a car Buying a car Image: Column a car Cluster: GOAL Choose Cluster	AESTHETICS 0.25 COMFORT 0.25 COST 0.25 SAFETY 0.25	This is the direct data input are Type in new direct data here, a Click the invert box invert prior direct data. NOTE: Any changes made in d efffect immediately and pre-existing data input	ea. and/or rities for lirect data d overwrit ted in the	this a take te	
Restore	└ Invert	other modes.		-	

5. Sensitivity Analysis

Scenario 1: all criteria same weight

6. Final Decision

If all criteria have the same weight the best choice becomes CAR 1, but just a little. It means that model is quite robust.

We can analyze different possible scenarios of interest to understand in which cases the best original choice is no longer so.

Understanding the Analytic Hierarchy Process

Intermediate

AHP model with sub-criteria

AHP model with sub-criteria

How to modify the model?

AHP model with sub-criteria How to modify the model?

_

How to modify the model?

AESTHETIC /	COMFORT	COS	ST	ς α σετν
Prestige	COMFORI	Insurance	Mainten.	SAFEII
Excellent	Medium	22.500,	00 EUR	Medium
		500,00	300,00	
		26.700,00 EUR		
Good	Excellent	550,00	350,00	Excellent
		28.20	0,00 EUR	
Medium	Good	500,00	400,00	Good

How to modify the model? 1 new matrix for insurance cost

🚱 Comparisons for Super Decisio	ns Main Window: AHP_3 CARS with subcriteria.sdmod	_		\times
1. Choose	2. Node comparisons with respect to insurance cost	+ 3.	Resu	lts
Node Cluster Choose Node insurance cost Cluster: COST sub-criter~ Choose Cluster ALTERNATIVES Restore	Graphical Verbal Matrix Questionnaire Direct Comparisons wrt "insurance cost" node in "ALTERNATIVES" cluster CAR 3 is moderately to strongly more important than CAR 2 1. CAR 1 >=9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 2 2. CAR 1 >=9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 3 3. CAR 2 >=9.5 9 8 7 6 5 4 3 2 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 3	Normal - Inconsi CAR 1 CAR 2 CAR 3	Hybritistency: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	rid 0000 .44444 .11111 .44444

How to modify the model? 1 new matrix for maintenance cost

🚳 Comparisons for Super Decisio	ns Main Window: AHP_3 CARS with subcriteria.sdmod	[
1. Choose	2. Node comparisons with respect to maintenance cost	+ 3. F	Results
Node Cluster	Graphical Verbal Matrix Questionnaire Direct	Normal —	Hybrid 🗕
maintenance co~	CAR 1 is moderately to strongly more important than CAR 3 1. CAR 1 >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 2	CAR 1	ncy: 0.07069 0.61441
Cluster: COST sub-criter~	2. CAR 1 >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 3 3. CAR 2 >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. CAR 3	CAR 2 CAR 3	0.20037
Choose Cluster			
Restore		Cor Copy tc	mpleted 🟓 mparison 🎐 clipboard

How to modify the model?

In **summary**, the procedure to insert sub-criteria to a specific criterion (e.g., cost) consist of:

- Create sub-criteria cluster for the specific criterion;
- Create the **sub-criteria nodes**;
- Connect the criterion node to the alternatives;
- Compare pairwise the sub-criteria to obtain the relative sub-criteria weights;
- Compare the alternatives with respect to these subcriteria.

Understanding the Analytic Hierarchy Process

Intermediate

AHP Absolute Model (or Rating Model)

Absolute model or called Rating Model

- Sometimes there is a large number of alternatives to consider. For example, in the case of evaluating employees for promotion, it would not be unusual to have to evaluate 30 or more.
- This would make a **pairwise comparison very difficult** due to the excessive number of required comparisons.
- A similar situation occurs when you are constantly adding or removing alternatives.
 - A pairwise comparison requires a repetitive comparative process.

This process is tedious!

Absolute model or called Rating Model

To resolve these two situations ratings model have been developed by Prof. Saaty.

In an Absolute model a **hierarchy is developed** in the usual way down to the level of criteria or sub-criteria.

The criteria or sub-criteria are further subdivided into a **level for intensities**.

Absolute model or called Rating Model

- An intensity may be expressed as a **numerical range** of values if the criterion is measurable or in qualitative terms.
- For example, if we have a class and we would like to rank students according to their performance in mathematics, the mathematics ranking might be:
- 1. excellent, good, average, below average, poor
- 2. or using the usual school terminology A, B, C, D, and E
- 3. or a third way is to use numerical ranges 93-100, 85-95, 75-85, 60-75, below 60

ি Super Decisions Main Window: AHP_3 CARS_absolute.sdmod Eile Design Assess/Compare Computations Networks Help লে এর দি দি বিদ্যালয় বাবের বিদ্যালয় বিদ্যা বিদ্যালয় বিদ্যা বিদ্যালয় বিদ্যা বিদ্যালয় বিদ্যালয		-	Ū	×
	GOAL - C × Buying car			
	CRITERIA CRITERIA COST COMFORT SAFETY AESTHETICS			
<				>

Somparisons for Super E	Decisions Main Window: AHP_3 CARS_absolute.sdmod		—	
1. Choose	2. Node comparisons with respect to Buying car	+ 3	. Results	6
Node Cluster	Graphical Verbal Matrix Questionnaire Direct	Normal 🗕		Hybrid 🗖
Choose Node	Comparisons wrt "Buying car" node in "CRITERIA" cluster	Incon	sistency: 0.08704	4
Buying car 🗾		AESTHETICS		0.03960
Cluster: GOAL	2. AESTHETICS >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. COST	COMFORT		0.10612
	3. AESTHETICS >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY	COST		0.40207
Choose Cluster	4. COMFORT >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. COST	SAFETY		0.45221
	5. COMFORT >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY			
	6. COST >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. SAFETY		Completed	
		~	Comparison 🦻	•
Restore		Cor	by to clipboard	

In ratings models, the **evaluation of the alternatives** is **NOT** done via pairwise comparison but by **rating them** with respect to each criterion separately.

For this purpose, we need to **Create a ratings Scale** for each criterion.

How to build the model?

Select **Design>Ratings** to open the Ratings screen where the Alternatives will be evaluated.

🚱 Ratings for Super Decisions Main	Window: — 🗆	×	
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>C</u> alculations <u>H</u> elp			
Super Decis	ions Ratings		
No Ratings Data. FPriorities	tals	^	
<		> ~	
		Select Criteria –	- 🗆 🗙 des to add as criteria:
	<mark>Select Criteria</mark>	AESTHETICS COMFORT	^
		COST <u>SAFETY</u> Buying car	
		Add	Done

We need to add the **alternatives**.

For this we select *Edit/Alternatives/New* and proceed to enter the name of the first alternative.

Ratings for S	Super Decisions N		×				
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>C</u> alculations <u>H</u> el	р					
			Super Decisio	ons Ratings			
	Priorities	Totals	AESTHETICS 0.250000	COMFORT 0.250000	COST 0.250000	SAFETY 0.250000	^
CAR 1	0.000000	0.000000					
CAR 2	0.000000	0.000000					
CAR 3	0.000000	0.000000					
<							\rightarrow \vee

>=9.5 No comp. Poor

How to build the model?

- Now you must create a **rating scale** for each criterion.
- For this select *Edit/Criteria/Edit Categories* and select
- Comfort... Aesthetic....Cost...Safety...and click OK.

•	
Add the ratings/comparisons	🚱 Comparisons wrt "Criteria Compares for COMFO — 🗆 🛛 🛛
	<u>File</u> <u>C</u> omputations <u>M</u> isc <u>H</u> elp
	Graphical Verbal Matrix Questionnaire Direct
	Comparisons wrt "Criteria Compares for COMFORT" in Cate
	gories.
<u>Eile</u>	1. Excellent >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Above Average
Excellent ^ Move Up	2. Excellent >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Average
Above Average Move Down	3. Excellent >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Below Average
Below Average	4. Excellent >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Poor
Poor New	5. Above Average >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Average
Rename	6. Above Average >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Below Average
	7. Above Average >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Poor
Remove	8. Average >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Below Average
Comparisons	9. Average >=9.5 9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9 >=9.5 No comp. Poor

10. Below Average >=9.5

Now you must evaluate alternatives using the ratings model

🚳 Ratings for	Ratings for Super Decisions Main Window: AHP_3 CARS_absolute.sdmod: ratings Le Edit View Calculations Help Super Decisions Ratings Priorities Totals AESTHETICS 0.039602 COMFORT 0.106121 COST 0.402065 SAFETY 0.452212 AR 1 0.322476 0.593840 Excellent Average Excellent Average AR 2 0.439653 0.809621 Above Average Excellent Above Average Excellent AR 3 0.237871 0.438040 Average Above Average Above Average Above Average							\times
<u>F</u> ile <u>E</u> dit <u>V</u> iew	Calculations H	<u>H</u> elp						
			Super Decis	ions Ratings				
	Priorities	Totals	AESTHETICS 0.039602	COMFORT 0.106121	COST 0.402065	SAFETY 0.452212		
CAR 1	0.322476	0.593840	Excellent	Average	Excellent	Average]	
CAR 2	0.439653	0.809621	Above Average	Excellent	Above Average	Excellent		
CAR 3	0.237871	0.438040	Average	Above Average	Average	Above Average		
<								\rightarrow \vee

Rating scale values for comfort.

Ratings for S	Super Decisions N	1ain Window: AHF	2_3 CARS_absolute	e.sdmod: ratings		_	×
<u>F</u> ile <u>E</u> dit <u>V</u> iew	<u>Calculations</u> <u>H</u> el	lp					
			Super Decis	ions Ratings			
	Priorities	Totals	AESTHETICS 0.039602	COMFORT 0.106121	COST 0.402065	SAFETY 0.452212	^
CAR 1	0 🐼 Column Pr	iorities f —	\Box \times	Average	Excellent	Average	
CAR 2	0			Excellent	Above Average	Excellent	
CAR 3	0 Priori	ties for columns c	of ratings	Above Average	Average	Above Average	
	syste	m.					
	AESTHETICS		0.039602	1 1			
	COMFORT		0.106121				
	COST		0.402065				
	SAFETY		0.452212				
			_				
<							\rightarrow \vee

Final Results

🛞 New synthesis	for: Super Decision	ons Main Wir	ndow: AHF	P_3 CARS_a	absolute.sdmod: ra	ti —	\times
	Here ar alternat Decisio ratings	re the overall tives. You sy ons Main Wind	synthesized nthesized dow: AHP	ed priorities from the n _3 CARS_s	s for the etwork Super absolute.sdmod:		
Name	Graphic	Ideals	Normals	Raw			
CAR 1		0.733479	0.322476	0.322476			
CAR 2		1.000000	0.439653	0.439653			
CAR 3		0.541044	0.237872	0.237872			
	1						
Okay Copy Value	s						~

Case Study 3

Absolute AHP Model: a case study for employee performance evaluation

Methodological approach

- **Step 1:** Identify the criteria, subcriteria for evaluation and put them into the AHP hierarchy.
- **Step 2:** Build the hierarchy (AHP Model)
- **Step 3:** Calculate the weights of the decision criteria by the relative measurement of AHP, i.e., construct the pairwise comparison matrix
- **Step 4:** Divide each subcriterion into several intensities or grades. Set priorities on the intensities by comparing them pairwise under each subcriterion. Multiply these priorities by the priority of the parent subcriterion.
- **Step 5:** Take one alternative at a time and measure its/his/her performance intensity under each subcriterion.

Problem Statement

The aim of the model is to evaluate employees performances based upon **6 criteria**:

- C1: quantity/quality of the work
- C2: planning/organization
- C3: initiative/commitment
- C4: teamwork/cooperation
- C5: communication
- C6: external factors

Step 1: Criteria and Subcriteria

Quality/Quantity of work (C1)

This criterion includes completion of tasks in a thorough, accurate and timely manner that achieve expected results. Subcriteria are:

- Complete tasks (C11)
- Concern for goals (C12)
- Multiple assignments (C13)

Planning/organization (C2)

Planning for usage of organization's limited resources and organizing himself/herself to carry out the activities. Subcriteria are:

- Clear objectives (C21)
- Identify resources (C22)
- Seek guidance (C23)

Step 1: Criteria and Subcriteria

Initiative/commitment (C3)

This criterion evaluates **individual responsibility** when performing duties. Subcriteria are:

- Demonstrated commitment as a responsible person (C31)
- Minimal supervision (C32)
- Meets expectations (C33)

Teamwork/cooperation (C4)

This includes maintaining harmonious and effective work relationships with coworkers. Subcriteria are:

- Harmonious work (C41)
- Adapts to changes (C42)
- Share information resources (C43)

Step 1: Criteria and Subcriteria

Communication (C5)

This is concerned about how effectively the employee **conveys information** and ideas both orally and in writing. Subcriteria are:

- Conveys information/idea (C51)
- Conflict resolution (C52)
- Seeks clarification (C53)

External factors (C6)

This is about the ability to contribute **to greater society** in several ways. Subcriteria are:

- Contribution to society (C61)
- Involvement at the non organizational activities (C62)
- Promotes the company (C63)

Absolute model Step 2: Hierarchy (AHP Model)

The Hierarchy of the Criteria and Subcriteria of the Evaluation Process

Absolute model Step 2: Hierarchy (AHP Model)

The Partial Hierarchy Consisting of the Employees

Step 3: Pairwise comparision for Criteria

	C ₁	C ₂	C3	C ₄	C ₅	C ₆	Weights
C1	1	8	6	7	4	7	0.480
C ₂		1	7	6	4	7	0.240
C3			1	7	5	6	0.135
C ₄				1	6	8	0.077
C ₅					1	8	0.049
C ₆						1	0.019
CR=0.40							

Step 3: Pairwise comparision for Sub Criteria

C1	C11	C ₁₂	C ₁₃	Wts.		
C ₁₁	1	8	9	0.804		
C ₁₂		1	2	0.122		
C ₁₃			1	0.074		
CR=0.04						

C ₂	C ₂₁	C ₂₂	C ₂₃	Wts.		
C ₂₁	1	4	8	0.699		
C ₂₂		1	5	0.237		
C ₂₃			1	0.064		
CR=0.09						

C3	C ₃₁	C ₃₂	C33	Wts.	
C ₃₁	1	8	9	0.804	
C ₃₂		1	2	0.122	
C33			1	0.074	
CR=0.04					

C ₄	C ₄₁	C ₄₂	C ₄₃	Wts.	
C ₄₁	1	3	8	0.653	
C42		1	6	0.285	
C43			1	0.062	
CR=0.07					

C5	C ₅₁	C52	C53	Wts.		
C ₅₁	1	8	8	0.796		
C ₅₂		1	2	0.125		
C53			1	0.079		
CR=0.05						

C ₆	C ₆₁	C ₆₂	C63	Wts.		
C ₆₁	1	8	9	0.798		
C ₆₂		1	3	0.138		
C ₆₃			1	0.064		
CR=0.10						

Step 4: Divide each subcriterion into several intensities

Excellent (E) Good (G) Average (A) Satisfactory (S) Poor (P)

Step 4: Comparision matrix for Intensities

The pairwise comparison matrix for the intensities namely, excellent (E), good (G), average (A), satisfactory (S), and poor (P) is the following:

	Е	G	Α	S	Р	Weights
Е	1	3	5	6	8	0.501
G		1	3	5	6	0.262
Α			1	3	5	0.133
S				1	3	0.067
Р					1	0.036
CR=0.06						

Absolute model

Step 5: Performance Rating of 25 Employees

		Fmpl	C.				C			С,			C4			C.			Ce		
		p	C.,	Co	Cm	Car	Cm	Can	Cu	C.	Cm	Ca	Č.	Ca	Co	Co	Co	Ca	Co	Co	
		ΔΔD	G	S	G	F	Δ	Δ	G	S 232	G	G	S42	040 V	G	P	G	G	S 82	G	
	1	ARA	F	P	G	F	\$	Δ	F	P	Ğ	G	Š	Š	G	\$	G	G	s	G	
		AGS	F	P	G	Ğ	Δ	ŝ	F	P	Ğ	G	Š	Š	G	P	G	G	S	G	
		BA	G	S	G	G	S	A	G	G	G	G	A	Š	A	S	A	A	S	G	
		BA	Ē	P	Ē	G	S	A	Ē	P	E	E	A	S	A	S	A	A	S	G	
		BB	E	P	G	Ā	S	A	Ē	P	G	G	S	S	A	S	A	A	S	G	
		BK	E	P	G	A	S	A	Ē	P	G	G	Ā	S	A	P	A	A	S	G	
25		CI	G	P	G	E	S	A	G	P	G	G	S	S	G	P	G	G	S	G	
23		CPD	G	P	G	G	S	S	G	P	G	G	Α	S	G	Р	G	G	S	G	
		DA	G	S	Е	G	S	S	G	S	Е	Е	S	Α	G	S	G	G	S	G	
	(DD	Е	Р	Е	E	S	Α	E	Р	Е	Е	Α	S	Е	S	Е	Е	S	G	
ee's	$\langle \rangle$	FA	Е	Р	Е	G	S	S	Е	P	Е	Е	Α	S	G	S	G	G	Α	E	
	$\langle \rangle$	FF	Е	Р	Е	G	Α	Α	E	P	Е	Е	Α	S	G	Р	G	G	S	G	
name	$\langle \rangle$	FH	Е	S	G	E	A	S	E	S	G	G	Α	S	G	Р	G	G	S	G	
	$\langle \rangle$	GB	Е	S	S	G	Α	S	E	S	G	G	S	S	G	S	G	G	S	G	
	\setminus	HA	G	S	S	E	A	S	G	S	G	G	Α	S	G	S	G	G	S	G	
	\setminus	HB	Е	S	Е	G	Α	S	E	S	E	E	Α	S	G	S	G	G	S	G	
		HH	Е	S	S	G	Α	S	Ε	S	G	G	S	S	G	S	G	G	S	G	
	$\langle \rangle$	JS	G	P	Е	E	S	S	G	P	E	E	Α	S	E	P	E	G	S	G	
	$\langle \rangle$	KN	Е	Р	Е	G	S	S	E	P	E	E	Α	S	G	Р	G	G	S	G	
	$\langle \rangle$	LHA	Е	S	G	G	Α	A	E	S	G	G	Α	S	G	S	G	G	S	G	
	V	MAB	G	P	G	E	G	A	G	P	G	G	A	S	G	S	G	G	S	G	
		MK	Е	Р	E	G	Α	Α	E	P	E	E	Α	S	G	P	G	G	S	G	
		NANF	Е	Р	E	G	S	A	E	P	E	E	A	S	G	S	G	G	S	G	
		NH	Е	S	E	E	A	S	E	S	E	E	S	S	E	S	E	E	S	G	
	•																				

Absolute model

Step 5: Overall Weights and Ranking of the 25 Employees

Priorities

			_																	
			0,3861	0,0585	0,0354	0,1675	0,0568	0,0154	0,1087	0,0165	0,0100	0,0501	0,0219	0,0048	0,0394	0,0062	0,0039	0,0150	0,0026	0,0012
	TOTALS	PRIORITIES	11	C12	C13	Q1	C22	C23	Gi	C32	G3	C41	C42	C43	C51	C52	C53	C61	C62	C63
AAD	0,5408	0,0327	0,5226	0,1347	0,5226	1,0000	0,2661	0,2661	0,5226	0,1347	0,5226	0,5226	0,1347	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
ABA	0,7653	0,0463	1,0000	0,0724	0,5226	1,0000	0,1347	0,2661	1,0000	0,0724	0,5226	0,5226	0,1347	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
AGS	0,6904	0,0417	1,0000	0,0724	0,5226	0,5226	0,2661	0,1347	1,0000	0,0724	0,5226	0,5226	0,1347	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
BA	0,4480	0,0271	0,5226	0,1347	0,5226	0,5226	0,1347	0,2661	0,5226	0,5226	0,5226	0,5226	0,1347	0,1347	0,2661	0,1347	0,2661	0,2661	0,1347	0,5226
BB	0,6274	0,0379	1,0000	0,0724	0,5226	0,2661	0,1347	0,2661	1,0000	0,0724	0,5226	0,5226	0,1347	0,1347	0,2661	0,1347	0,2661	0,2661	0,1347	0,5226
BK	0,6299	0,0381	1,0000	0,0724	0,5226	0,2661	0,1347	0,2661	1,0000	0,0724	0,5226	0,5226	0,2661	0,1347	0,2661	0,0724	0,2661	0,2661	0,1347	0,5226
a	0,5286	0,0320	0,5226	0,0724	0,5226	1,0000	0,1347	0,2661	0,5226	0,0724	0,5226	0,5226	0,1347	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
CPD	0,4495	0,0272	0,5226	0,0724	0,5226	0,5226	0,1347	0,1347	0,5226	0,0724	0,5226	0,5226	0,2661	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
DA	0,4979	0,0301	0,5226	0,1347	1,0000	0,5226	0,1347	0,1347	0,5226	0,1347	1,0000	1,0000	0,1347	0,2661	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
DD	0,8416	0,0509	1,0000	0,0724	1,0000	1,0000	0,1347	0,2661	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	1,0000	0,1347	1,0000	1,0000	0,1347	0,5226
FA	0,7327	0,0443	1,0000	0,0724	1,0000	0,5226	0,1347	0,1347	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,2661	1,0000
FF	0,7409	0,0448	1,0000	0,0724	1,0000	0,5226	0,2661	0,2661	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
FH	0,7835	0,0474	1,0000	0,1347	0,5226	1,0000	0,2661	0,1347	1,0000	0,1347	0,5226	0,5226	0,5226	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
GB	0,6817	0,0412	1,0000	0,1347	0,1347	0,5226	0,2661	0,1347	1,0000	0,1347	0,5226	0,5226	0,1347	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
HA	0,5283	0,0319	0,5226	0,1347	0,1347	1,0000	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
HB	0,7439	0,0450	1,0000	0,1347	1,0000	0,5226	0,2661	0,1347	1,0000	0,1347	1,0000	1,0000	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
нн	0,6894	0,0417	1,0000	0,2661	0,1347	0,5226	0,2661	0,1347	1,0000	0,1347	0,5226	0,5226	0,1347	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
JS	0,5958	0,0360	0,5226	0,0724	1,0000	1,0000	0,1347	0,1347	0,5226	0,0724	1,0000	1,0000	0,2661	0,1347	1,0000	0,0724	1,0000	0,5226	0,1347	0,5226
KN	0,7314	0,0442	1,0000	0,0724	1,0000	0,5226	0,1347	0,1347	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
UHA	0,7003	0,0423	1,0000	0,1347	0,5226	0,5226	0,2661	0,2661	1,0000	0,1347	0,5226	0,5226	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
MAB	0,5396	0,0335	0,5226	0,0724	0,5226	1,0000	0,5226	0,2661	0,5226	0,0724	0,5226	0,5226	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
MK	0,7409	0,0448	1,0000	0,0724	1,0000	0,5226	0,2661	0,2661	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	0,5226	0,0724	0,5226	0,5226	0,1347	0,5226
NANE	0,7338	0,0444	1,0000	0,0724	1,0000	0,5226	0,1347	0,2661	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	0,5226	0,1347	0,5226	0,5226	0,1347	0,5226
NH	0,8488	0,0513	1,0000	0,1347	1,0000	1,0000	0,2661	0,1347	1,0000	0,1347	1,0000	1,0000	0,1347	0,1347	1,0000	0,1347	1,0000	1,0000	0,1347	0,5226
AB	0,7188	0,0435	1,0000	0,0724	1,0000	0,5226	0,1347	0,2661	1,0000	0,0724	1,0000	1,0000	0,2661	0,1347	0,2661	0,1347	0,2661	0,2661	0,1347	0,5226

Absolute model

Step 5: Overall Weights and Ranking of the 25 Employees

	PRIORITIES		PRIORITIES
AAD	0,0327	GB	0,0412
ABA	0,0463	HA	0,0319
AGS	0,0417	HB	0,0450
BA	0,0271	НН	0,0417
BB	0,0379	JS	0,0360
ВК	0,0381	KN	0,0442
CI	0,0320	LHA	0,0423
CPD	0,0272	MAB	0,0335
DA	0,0301	MK	0,0448
DD	0,0509	NANF	0,0444
FA	0,0443	NH	0,0513
FF	0,0448	AB	0,0435
FH	0,0474		

Case Study 4

AHP Model: supplier selection

Case Study 4

	Cost	Lead Time	Quality
SUPPLIER 1	100	2 days	GOOD
SUPPLIER 2	80	5 days	GOOD
SUPPLIER 3	120	3 days	EXCELLENT

Conclusion

The Analytic Hierarchy Process (AHP) is the Method of Prioritization

- 1. AHP captures priorities from paired comparison judgments of the
- 2. elements of the decision with respect to each of their parent criteria.
- 3. Paired comparison judgments can be arranged in a matrix.
- 4. Priorities are derived from the matrix as its principal eigenvector, which defines a ratio scale.
- 5. Thus, the eigenvector is an intrinsic concept of a correct prioritization process. It also allows for the measurement of inconsistency in judgment.
- 6. Priorities derived this way satisfy the property of a ratio scale just like pounds and yards do.

Conclusion

WHY IS AHP EASY TO USE?

- It does not take for granted the measurements on scales, but asks that scale values be interpreted according to the objectives of the problem.
- It relies on elaborate hierarchic structures to represent decision problems and is able to handle problems of risk, conflict, and prediction.

Conclusions

WHY THE AHP IS POWERFUL IN CORPORATE PLANNING

- 1. Breaks down criteria into manage-able components.
- 2. Leads a group into making a specific decision for consensus or tradeoff.
- 3. Provides opportunity to examine disagreements and stimulate discussion and opinion.

Scientific & Technical References

- Thomas L. Saaty Fundamentals of Decision Making and Priority Theory With the Analytic Hierarchy Process. Ed. RWS Publications, 2000.
- Enrique Mu, Milagros Pereyra-Rojas, Practical Decision Making: An Introduction to the Analytic Hierarchy Process (AHP) Using Super Decisions V2. Ed. Springer, 2017.
- Fabio De Felice, Thomas L. Saaty and Antonella Petrillo. Applications and Theory of Analytic Hierarchy Process - Decision Making for Strategic Decisions. Ed. InTECH. ISBN: 978-953-51-2561-7
- The SUPERDECISIONS software for decision making with the Analytic Hierarchy Process (AHP) and the Analytic Network Process (ANP).

Teacher References

Antonella PETRILLO University of Napoli Parthenope Isola C4, CDN 80143 Napoli (Italy) antonella.petrillo@uniparthenope.it

