SCSC2003 Abstract S0692

Forming of Controlled Living Microenvironments

Forming of Controlled Living Microenvironments

Submitting Author: Dr. Alexander Amelkin

Abstract:
The purpose of the present work is to work out an approach for the development of software and the choice of hardware structures when designing subsystems of automatic control of technological processes realized in living objects containing limited space (microenvironment). The subsystems for automatic control of the microenvironment (SACME) under development use the Devices for Air Prophylactic Treatment, Aeroionization, and Purification (DAPTAP) as execution units for increasing the level of safety and quality of agricultural raw material and foodstuffs, for reducing the losses of agricultural produce during storage and cultivation, as well as for intensifying the processes of activation of agricultural produce and industrial microorganisms. A set of interconnected SACMEs works within the framework of a general microenvironmental system (MES). In this research, the population of baker's yeast is chosen as a basic object of control under the industrial fed-batch cultivation
in a bubbling bioreactor. This project is an example of a minimum cost automation approach. The microenvironment optimal control problem for baker's yeast cultivation is reduced from a profit maximum to the maximization of overall yield by the reason that the material flow-oriented specific cost correlates closely with the reciprocal value of the overall yield. Implementation of the project partially solves a local sustainability problem and supports a balance of microeconomical, microecological and microsocial systems within a technological subsystem realized in a microenvironment maintaining an optimal value of economical criterion (e.g. minimum material flow-oriented specific cost) and ensuring: (a) economical growth (profit increase, raw material saving); (b) high security, safety and quality of agricultural raw material during storage process and of food produce during a technological process; elimination of the contact of gaseous harmful substances with a subproduct d
uring various technological stages; (c) improvement of labor conditions for industrial personnel from an ecological point of view (positive effect of air aeroionization and purification on human organism promoting strengthened health and an increase in life duration, pulverulent and gaseous chemical and biological impurity removal). An alternative aspect of a controlled living microenvironment forming is considered.


Back to SCSC2003 Abstracts